Quantcast
Channel: College of Arts and Sciences
Viewing all articles
Browse latest Browse all 1561

An alloy verification model for consensus-based auction protocols

$
0
0
An alloy verification model for consensus-based auction protocols Mirzaei, Saber; Esposito, Flavio Max Consensus-based Auction (MCA) protocols are an elegant approach to establish conflict-free distributed allocations in a wide range of network utility maximization problems. A set of agents independently bid on a set of items, and exchange their bids with their first hop-neighbors for a distributed (max-consensus) winner determination. The use of MCA protocols was proposed, e:g:, to solve the task allocation problem for a fleet of unmanned aerial vehicles, in smart grids, or in distributed virtual network management applications. Misconfigured or malicious agents participating in a MCA, or an incorrect instantiation of policies can lead to oscillations of the protocol, causing, e:g:, Service Level Agreement (SLA) violations. In this paper, we propose a formal, machine-readable, Max-Consensus Auction model, encoded in the Alloy lightweight modeling language. The model consists of a network of agents applying the MCA mechanisms, instantiated with potentially different policies, and a set of predicates to analyze its convergence properties. We were able to verify that MCA is not resilient against rebidding attacks, and that the protocol fails (to achieve a conflict-free resource allocation) for some specific combinations of policies. Our model can be used to verify, with a “push-button” analysis, the convergence of the MCA mechanism to a conflict-free allocation of a wide range of policy instantiations.

Viewing all articles
Browse latest Browse all 1561

Trending Articles