Schrieffer-Wolff Transformation for periodically driven systems: strongly correlated systems with artificial gauge fields
Bukov, Marin; Kolodrubetz, Michael; Polkovnikov, Anatoli
We generalize the Schrieffer-Wolff transformation to periodically driven systems using Floquet theory. The method is applied to the periodically driven, strongly interacting Fermi-Hubbard model, for which we identify two regimes resulting in different effective low-energy Hamiltonians. In the nonresonant regime, we realize an interacting spin model coupled to a static gauge field with a nonzero flux per plaquette. In the resonant regime, where the Hubbard interaction is a multiple of the driving frequency, we derive an effective Hamiltonian featuring doublon association and dissociation processes. The ground state of this Hamiltonian undergoes a phase transition between an ordered phase and a gapless Luttinger liquid phase. One can tune the system between different phases by changing the amplitude of the periodic drive.
↧