Open Gromov–Witten invariants and mirror maps for semi-Fano toric manifolds
Chan, Kwokwai; Lau, Siu-Cheong; Leung, Naichung Conan; Tseng, Hsian-Hua
We prove that for a compact toric manifold whose anticanonical divisor is numerically effective, the Lagrangian Floer superpotential defined by Fukaya–Oh–Ohto–Ono [15] is equal to the superpotential written down by using the toric mirror map under a convergence assumption. This gives a method to compute open Gromov–Witten invariants using mirror symmetry.
↧