Quantcast
Channel: College of Arts and Sciences
Viewing all articles
Browse latest Browse all 1561

Single-shot 3D widefield fluorescence imaging with a computational miniature mesoscope

$
0
0
Single-shot 3D widefield fluorescence imaging with a computational miniature mesoscope Xue, Yujia; Davison, Ian G.; Boas, David A.; Tian, Lei Fluorescence imaging is indispensable to biology and neuroscience. The need for largescale imaging in freely behaving animals has further driven the development in miniaturized microscopes (miniscopes). However, conventional microscopes / miniscopes are inherently constrained by their limited space-bandwidth-product, shallow depth-of-field, and inability to resolve 3D distributed emitters. Here, we present a Computational Miniature Mesoscope (CM2) that overcomes these bottlenecks and enables single-shot 3D imaging across an 8 × 7-mm2 field-of-view and 2.5-mm depth-of-field, achieving 7-μm lateral resolution and better than 200-μm axial resolution. Notably, the CM2 has a compact lightweight design that integrates a microlens array for imaging and an LED array for excitation in a single platform. Its expanded imaging capability is enabled by computational imaging that augments the optics by algorithms. We experimentally validate the mesoscopic 3D imaging capability on volumetrically distributed fluorescent beads and fibers. We further quantify the effects of bulk scattering and background fluorescence on phantom experiments.

Viewing all articles
Browse latest Browse all 1561

Trending Articles