Quantcast
Channel: College of Arts and Sciences
Viewing all articles
Browse latest Browse all 1561

Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering

$
0
0
Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering Bukov, Marin; D'Alessio, Luca; Polkovnikov, Anatoli We give a general overview of the high-frequency regime in periodically driven systems and identify three distinct classes of driving protocols in which the infinite-frequency Floquet Hamiltonian is not equal to the time-averaged Hamiltonian. These classes cover systems, such as the Kapitza pendulum, the Harper–Hofstadter model of neutral atoms in a magnetic field, the Haldane Floquet Chern insulator and others. In all setups considered, we discuss both the infinite-frequency limit and the leading finite-frequency corrections to the Floquet Hamiltonian. We provide a short overview of Floquet theory focusing on the gauge structure associated with the choice of stroboscopic frame and the differences between stroboscopic and non-stroboscopic dynamics. In the latter case, one has to work with dressed operators representing observables and a dressed density matrix. We also comment on the application of Floquet Theory to systems described by static Hamiltonians with well-separated energy scales and, in particular, discuss parallels between the inverse-frequency expansion and the Schrieffer–Wolff transformation extending the latter to driven systems.

Viewing all articles
Browse latest Browse all 1561

Trending Articles