Quantcast
Channel: College of Arts and Sciences
Viewing all articles
Browse latest Browse all 1561

Quantum versus classical annealing: insights from scaling theory and results for spin glasses on 3-regular graphs

$
0
0
Quantum versus classical annealing: insights from scaling theory and results for spin glasses on 3-regular graphs Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W. We discuss an Ising spin glass where each S=1/2 spin is coupled antiferromagnetically to three other spins (3-regular graphs). Inducing quantum fluctuations by a time-dependent transverse field, we use out-of-equilibrium quantum Monte Carlo simulations to study dynamic scaling at the quantum glass transition. Comparing the dynamic exponent and other critical exponents with those of the classical (temperature-driven) transition, we conclude that quantum annealing is less efficient than classical simulated annealing in bringing the system into the glass phase. Quantum computing based on the quantum annealing paradigm is therefore inferior to classical simulated annealing for this class of problems. We also comment on previous simulations where a parameter is changed with the simulation time, which is very different from the true Hamiltonian dynamics simulated here.

Viewing all articles
Browse latest Browse all 1561

Trending Articles